Oja's algorithm for graph clustering, Markov spectral decomposition, and risk sensitive control

نویسندگان

  • Vivek S. Borkar
  • Sean P. Meyn
چکیده

Given a positive definite matrix M and an integer Nm ≥ 1, Oja’s subspace algorithm will provide convergent estimates of the first Nm eigenvalues of M along with the corresponding eigenvectors. It is a common approach to principal component analysis. This paper introduces a normalized stochastic-approximation implementation of Oja’s subspace algorithm, as well as new applications to the spectral decomposition of a reversible Markov chain. Recall that this means that the stationary distribution satisfies the detailed balance equations [26]. Equivalently, the statistics of the process in steady state do not change when time is reversed. Stability and convergence of Oja’s algorithm are established under conditions far milder than assumed in previous work. Applications to graph clustering, Markov spectral decomposition, and multiplicative ergodic theory are surveyed, along with numerical results. 2000 AMS Subject Classification: 05C85, 94C15, 68W20, 62L20, 60J22, 60J10, 37A30, 92B20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oja's algorithm for graph clustering and Markov spectral decomposition

Given a positive definite matrix M and an integer Nm ≥ 1, Oja’s subspace algorithm will provide convergent estimates of the first Nm eigenvalues of M along with the corresponding eigenvectors. It is a common approach to principal component analysis. This paper introduces a normalized stochastic-approximation implementation of Oja’s subspace algorithm, as well as new applications to the spectral...

متن کامل

Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members

Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...

متن کامل

Accelerated decomposition techniques for large discounted Markov decision processes

Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...

متن کامل

On the use of agglomerative and spectral clustering in speaker diarization of meetings

In this paper, we present a clustering algorithm for speaker diarization based on spectral clustering. State-of-the-art diarization systems are based on agglomerative hierarchical clustering using Bayesian Information Criterion and other statistical metrics among clusters which results in a high computational cost and in a time demanding approach. Our proposal avoids the use of such metrics app...

متن کامل

Spectral Clustering for Robust Motion Segmentation

In this paper, we propose a robust motion segmentation method based on the matrix factorization and subspace separation. We, first, mathematically prove that the shape interaction matrix can be derived using QR decomposition rather than Singular Value Decomposition(SVD). Using shape interaction matrix, we solve the motion segmentation problem using spectral graph clustering technique. We exploi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2012